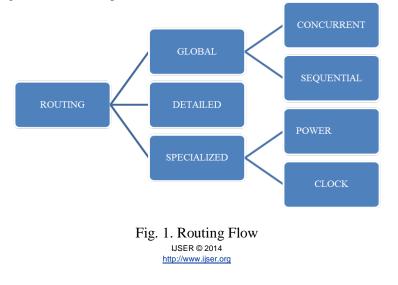
A Survey on Heuristic Algorithms on Detailed Routing in Physical Design Automation

Upasana Yadav¹, Pragya Sharma², Neeraj Kr. Shukla³

Abstract— Routing is one of the most complex stage in physical design. Detailed routing determines the exact place of tracks and via. The main objective ofdetailed routing is to reduce the area of an integrated chip. Minimization of wire length, number of tracks, channel length, congestion factor is the key problem in physical design. Routing is a process to interconnect all the nets within the channel considering all constraints(horizontal and vertical constraints) of that channel. Unlike traditional routing schemes ,all the traffic is along a single path, multipath routing scheme splitthe traffic among several paths in order to reduce the congestion. In this paper, we analyze different single-layer algorithms, two-layer algorithms and three layer algorithms and conclude that the objective of the routing problems like crosstalk, wire length, channel length, no of tracks and vias.

Index Terms— Algorithm, Detailed routing, Physical design, VLSI CAD

I. Introduction


The most important step in the physical design of VLSI circuits is detailed routing. Detailed routing determines the exact tracks and via for nets. The two most popular types of detailed routing: channel routing and full-chip routing. In earlier process technologies when the maximum number of available metal layers was only two or three, channel routing was pervasively used, because most wires were routed in the free space(i.e. routing channel) between a pair of logic blocks. In modern technologies, a chip typically contains six to ten metal layers, and the number of available metal layers is expected to increase steadily in the near future. With more metal layers, routing over the logic block is common. As a result, routing regions become more like channel-less regions. This trend drives the need of a full-chip routing.

Channel routing plays a important role in a physical design of VLSI chips. Many algorithms have been proposed in the past few years, for single-layer routing [15] and two-layer routing and three-layer routing. Recent studies shows that the network would be more efficient and robust if routers could flexibly divide traffic over multiple paths. Distributed multipath routing algorithm solve the question of path selection and minimize congestion[20]. Crosstalk minimization is done by bubble sorting based manhatten channel router and rerouting algorithm in four-layer non-manhattan channel routing[28].

The remainder of the paper is organized as follow: section II describes the evolution tree of detailed routing and algorithms in detailed routing. In Section III, we present our survey work. Finally, we conclude our work in section IV.

II. Detailed Routing - The Evolution Tree

Detailed routing problem is solved by solving one routing region at a time. The routing area is first partitioned into smaller regions. Since, the global router only assign wires to different regions, the detailed routing problem is to find the actual geometric path for each wire in a region. Shape of the region is the most important factor.

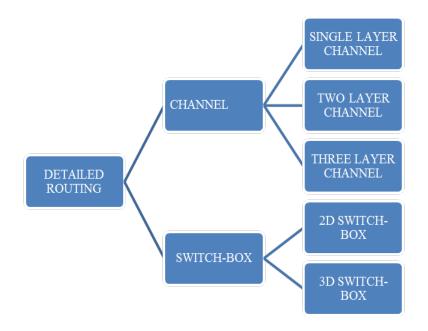


Fig. 1a. Detailed Routing

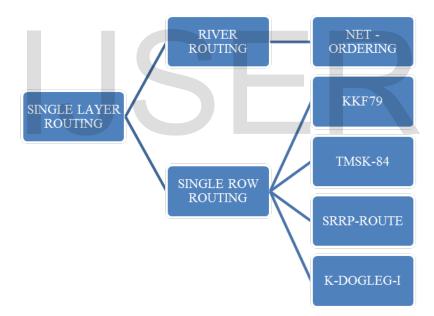
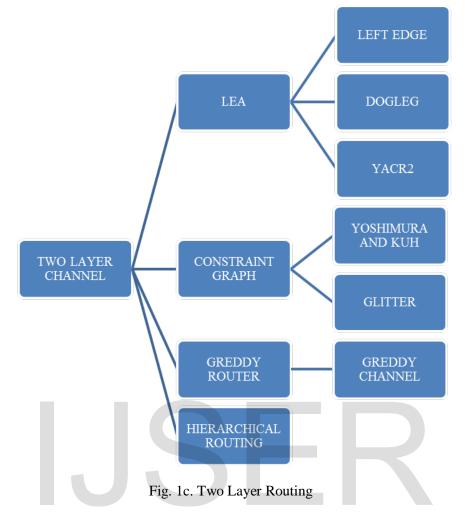



Fig. 1b. Single Layer Routing

Detailed Routing Algorithms

.LEA	The algorithm was designed to route array-based two layer PCBs. It uses a reserved layer modelit doesnot allow doglegs and any vertical constraints.
ii.DOGLEG	Drawback of LEA is overcome by this algorithm. The dogleg router isthatit allows multiterminal netsand vertical constraints.
iii.YACR2	This algorithm explain how vertical constraints violation are handled and define the concept of vertical overlap fac tor, which indicate the total number of tracks that a vertical constraint violation spans.
iv. Y-K	It is based on net merging. It include both horizontal and vertical constraints graphs and assign tasks to nets so as to minimize the effect of vertical constraint chain in the vertical constraint
v. GLITTER	A grid-less variable-width channel router called glitter. Glitter can utilize multiple layer technology.
vi. GREEDY	The algorithm start from the left most column and place all the nets and segments of a column beforeproceedings to the next right column. In each column, the router assigns net segments to tracks in a greedy manner.

III. Literature Survey

QNE HILL NOHLOE "A New algorithms with Mini- mum Tracks for Four Layer Channel Routing in VLSI De- sign"Ajoy Kumar Khan , Bhaskar Das [1]	CONFERENCE CONFERENCE	ADD EDA ADD EDA ADD EDA AND EDA AND EDA ADD EDA ADD EDA	Vertical Con- straint Graph(VCG), Horizontal Constraint Graph(HCG) Horizontal non Constraint Graph(HNCG)	H H H H H H H H H H H H H H H H H H H	SLUENHUP Reduced the no. of tracks needed for channel routing problem then au- tomatical- ly the area of an IC chip is also re- duced	SNOLLY LIWIT There is no close loop in the VCG of that channel that means the VCG must be tree	HOOS HADDE If there is a cycle in VCG. a) Add a vertical layer. Then it becomes a five layer channel problem. So we draw some algo- rithms for this pur- pose.	a) Know about transitively orient- ed graph. b) reduction the no of tracks gives good result
"Yet an Efficient Algorithm for Compu- ting Re- duced Area VLSI Channel Routing Solution With Float- ing Termi- nals "Achire Pal, Swaga- taSahaSau, Ta- rakN.Mand al et-al.[2]	2011 IEEE Proceed- ings of 14 th IC- CIT	C pro- gram- ming lan- guage	Vertical con- straint graph(VCG), Horizontal non constraint graph(HNCG)	Density of the channel = no. of tracks required	Reduction of area or the chan- nel width		The algo- rithms for completing routing solutions with re- duced wire length and doglegging	 a) NP problem is solved by pro- posed algorithm. b)reduction chan- nel area under the reserved two-layer Manhattan no- dogleg channel.

"A Graph Theoretic Approach to Mini- mize Total Wire Length in Channel Rout- ing"Pralay Mitra et. al [3]	2003 IEEE		Using TAH framework, reduction the total wire length.		Minimiza- tion of total wire length for two layer channel routing.	Does not use back- tracking	a) exten- sion to computer reduced wirelength routing solution in the re- served three-layer HVH and VHV rout- ing models.	This algorithm does notuse much area in computing such solution.
"An Effi- cient High Perfor- mance Par- allel Algo- rithm to Yield Re- duced Wire Length VLSI Cir- cuits". Swaga- taSahaSau, Rajat Ku- mar Pal [4]	2012 IEEE 5 th CO- DEC	C++	High perfor- mance parallel algorithm MTAH is com- putation by small small modules.	For r2: 21.03% Ex5: 27.97% Reduction in total wire length in a solution computed using our algorithm MTAH	Different modules of MTAH run in parallel so it requires less exe- cution time and reduces the total wire length.	Algo- rithm require constant number of pro- cessor (or a single proces- sor)	Computing reduced wire length routing solution in the re- served three and multi-layer no-dogleg as well as and dogleg routing modules.	a) In which compu- tation time is neg- ligibly smallb) MTAH requires one ,two or three tracks.
"A Firefly Algorithm Approach for Routing in VLSI" M.NasirAy ob, Fariz Hassan,et- al. [5]	2012 IEEE IS- CAIE	Visual basic 6, Use size of 22* 17 grids.	Delay model Elmore delay Calculation and grid-graph model	The optimal so- lution of the case study which is 571.73ps	Find min- imum time delay by choos- ing the path and placing the buffer intelli- gently	-	Using other optimiza- tion tech- niques such as magnetic optimiza- tion algo- rithm and paddy field algorithm.	Examine the fit- ness of new firefly and updating the light intensity.

"A Routing Framework for Delay Tolerant Networks Based on Encounter Angle "Yue Cao, Haitham Cruick-	2011 IEEE	C++ lan- guage	a) Calculation of the encoun- ter angle.b) Probabilistic replicationc) Routing framework		Reduces the num- ber of aborted messages due to mobility factor and achieves the signif- icant per-		 a) More intelligent mechanism for the routing framework b) optimize the estimation of po- 	a) battery con- sumption function is also integrated into algorithms b) reduce the no. of transmissions for efficient bandwidth usages.
shank, Zhili Sun. [6]					formance		tential en- counter duration with low complexity.	
"Encounter- Based Routing in Delay Tol- erant Net- works" Jun- baozhang,G uangchun- lua, Ke Qin Haifeng Sun. [7]	2011 IEEE	Oppor- tunistic network envi- ronment (ONE) simula- tor ver- sion 1.4.0	Simulation set- up Effect of trans- mission range Effect of stor- age capacity	BE	EBR has good per- formance and low overhead in sparse network.		Analysis to real mobili- ty traces and hetero- geneous networks.	EBR exploits inter- contact time to predict the no of contacts from now to the expected delay.
"GDRouter: Interleaved Global Routing and De- tailed Rout- ing for Ul- timate Routabil- ity"Yanhen g Zhang Chris Chu. [8]	2012 DAC	C lan- guage	GDRouter a)Fast route(global) b)Regular route(detailed)	Reduce number of unassigned global segment by : a) 90% for ISPD98 b) 60% for ISPD05/06	Enhanced routability	GDRout- er quits the loop if de- tailed routing routabil- ity stops improv- ing or reaches max. iteration.	The solu- tion quality of the inter- leaved global rout- ing and detailed routing algorithms.	 a) spine routing and virtual routing are applied to gen- erate initial global capacity. b) GDRouter: an interleaved global and detailed rout- ing algorithm for the ultimate routa- bility.
"A Novel Detailed Routing Algorithm with Exact Matching Constraint for Analog	2011 IEEE 12 th Int'l Symposi- um on Quality Electronic	C++ lan- guage run on Linux server with Intel(R)	Detailed rout- ing: a) Grid algo- rithm b) Gridless algorithm	10X speedup	Size of the routing area with the exact matching con- straints is often		Algorithm to consider shielding and other geometric constraints.	Investigation of bounded-error matching routing beyond the exact matching routing.

and Mixed Signal Cir- cuits"Qiang Gao,Hailon g Yao Qi- ang- Zhou,YciC ai. [9]	Design	Xeon(T M)300 GHZ CPU			small enough to directly apply de- tailed routing		
"Dangling- wire Avoidance Routing for Crossbar Switch Structured ASIC De- sign Style"Yi- Huang Hung Hung-Yi Li , Po- Yang Hsu ,Yi- Yu-Liu. [10]	2010 IEEE Work is supported in National Science Council of Taiwan		Steiner three construction: a)Pin assign- ment b) Dangling wire aware c) Anchor pair insertion for congestion re- moval	21% dangling wire 34% channel width 13% total wire length	Crossbar switch routing frame- work re- duces: a) dan- gling-wire b) total wire length c) routing conges- tion.		 Proposed a) a high speed crossbar switch routing framework b) graph model for crossbar switch routing.
"Graph Colouring Based Mul- ti Pin Net Detailed Routing for FPGA us- ing SAT" Shyamapa- da Mukher- jee, Suchi- smita Roy [11]	2013 IEEE 3 rd IACC	C pro- gram- lan- guage	Modeled the FPGA as a col- ourablegraph. Demonstrated SAT-based FPGA detailed routing	Minimization of channel width		Consider all multi- pin nets simulta- neously	 Net ordering is a big issue in the net at a time approach because invalid sequence of net- selection may cause the algorithm to fail.
"The Au- tomation design Based on Graphs for the Sym- metrical Routing in Integrated Circuit" Xu-	2011 IEEE 2011 In- ternational Confer- ence on System Science, Engineer- ing De-	C pro- gram- ming lan- guage	a) Theoremsb) Algorithmsc) Corollaryd) Conjecture		A new heuristic algorithm based on the con- clusion to solve the problem of 2-layer manhattan	 a) Verti- cal con- straints are noncy- clic b) extra empty columns and dog- 	 The minimum parallel clique cov- er of CCG is equal to the optimal solu- tion of 2-layer manhattan channel routing.

Zhenghua. [12]	sign and Manufac- turing Informati- zation			channel routing	legs are not al- lowed	
"Crossing- Aware Channel Routing For Photon- ic Wave- guides" Christopher Condrat, Priyank- Kalla, Ste- ve Blair. [13]	2013 IEEE	 	 a) CA(crossing- aware)reduces the no of cross- ing to 0.607 × produce by YK(Yoshimura- Kuh)router b) cost of rough- ly 1.25×no of tracks. 		Cross- ing- minimi- zation- comes at the cost of addi- tional tracks.	 a) It uses left edge- style channel rout- ers.b) signal losses is reduced by channel router.
"Analytical Placement of Mixed- size Cir- cuits for Better De- tailed- Routabil- ity" Shuai- Li ,Cheng- KokKoh. [14]	2014 IEEE	Main two Con- tribution are: a) A new ana- lytical place- ment formula- tion with pin density con- straints b)scaled smoothing method to cope with fixed mac- ro blocks.	 a) avgwire- length& via count are 4% smaller than rip- ple &simPLR b) compared with NTUplace4 - avg wire length:1.9% larger - avg via count 1.0% smaller 	Technique are effec- tive in improving the routa- bility of placement results.	Target density t _{den} is set to be 0.80	 Detailed routing solutions with few- er violations can be generated in a shorter time for the proposed place- ment

"Short -	2014		a) Short -Term		High ac-		This ap-	Requirement:
Term Hy-	IEEE		Hydrothermal		curacy of		proach to	-
drothermal	Transac-		Dispatch prob-		proposed		be used as	a) hydro plants
Dispatch	tions on		lem.		approach		a guideline	h)th anno 1 a lan ta
With River-	Power				to repre-		for actual	b)thermal plants
Level and	Systems		b) River Level		sent max-		system	c) high accuracy
Routing			Constraints.		imum		operation.	e) mgn weenreej
Con-			c) River Rout-		hourly and			
straints."An			ing Constraints.		daily riv-			
dre			ing Constraints.		er-level			
LuizDiniz,					variations			
Thiago					without			
Moto Sou-					increase in			
za. [15]					CPU time			
"Efficient	2014		a)LBDRx is a	Minimize the	Reduce	Reduce	Further	Routing tables
Routing in	IEEE		series of routing	overall cost	the size of	logic	explore the	were replaced by
heteroge-	T		mechanisms		routing	cost,	mapping	the LBDRx mech-
neous SoC	Transac-		1.) A		tables	regard-	tool focus-	anism.
Designs	tions on		b) A mapping tool		either at	less of	ing on per-	
with Small	Comput-		1001		end nodes	system	formance	
Implemen-	ers				or at rout-	size	issues and	
tation over-					ers.		to optimize	
head"Jose							the tool to	
Cano, Jase-							provide the	
Flich et al. [16]							best map-	
[10]							ping for the target app.	
							taiget app.	
	2014				D 1 1			
"A Boolean	2014		IPL(integer	Wire length re-	Reduced	Perfor-	This EDA	The main reduction
Rule-	IEEE		linear pro-	duction $= 1.6\%$	logic cost	mance,	tool will	was in horizontal and vertical, but
Based Ap- proach for	Transac-		gramming) and LNS(large		regardless	power, area	enable the exploration	this reduction was
Manufac-	tions on		neighborhood		of system size.	area	and charac-	compensated by an
turability-	Comput-		search) algo-		5120.		terization	increase of vertical
Aware Cell	er-Aided		rithm for rout-				of wide	and increase of
Rout-	Design of		ing optimiza-				range of	vias.
ing"Jordi	Integrated		tion				layout tem-	1405.
Cortadella,	Circuits		uon				plates for	
Jordi Petit.	and Sys-						cell librar-	
et al. [17]	tems						ies.	
"An Effi-	2013	C lan-	Two approach-	a)15% reduction	a)Improve		Delay and	To avoid blockage
cient inter-		guage	es:	in wirelength	d intersec-		Crosstalk	during routing
section			a)Sequential	b) reduces CPU	tion be-		can be re-	Weight-based stei-
Avoiding				execution time.	tween nets		duced and	ner edge technique
Rectilinear			b)Concurrent		and con-		pin multi	used.
Routing Technique					gestion		net routing using non	
in VLSI"					b)Minimiz		manhattan	
Pratha-					ed block-		mannattall	
1 Iuulu								

pratimsaha, suman- tasaha,andt uhinasa- manta[18]					age in routing		routing	
"Regular Route : An Efficient Detailed Router Ap- plying Regular Routing Pat- terns"Yanh eng Zhang Chris Chu. [19]	2013 IEEE Transac- tions On Very Large Scale In- tegration (Vlsi) Systems		 a)Algorithm proceeds in a bottom-up layer -by- layer manner: a) Local net routing b) Global segment assignment c) Optimization 	20%-30% less metal 2 usage	a)Effectiv eness and Efficiency of Regular Route. b)Minor impact for density control	4 * 4 G- cell to form one region.	 a) Improve the perfor- mance of Regular Route b) A paral- lel version of tool for further runtime reduction. 	
"A Distrib- uted Multi- path Rout- ing Algo- rithm To Minimize Conges- tion" GuoXin, Zhang Jun, Zhang Jun, [20]	2009 IEEE 28th Dig- ital Avi- onics Sys- tems Con- ference		Distributed Congestion- Minimized Multipath (D-CMM):- a)Congestion facto b)Network throughput c)Delay	Congestion fac- tor < 1.0	a)Increase network through- put b) De- crease conges- tion factor c)Increase of shortest path delay	Transfer delay		Proposed algorithm is more suitable in long distance transmission and dense network to- pology.
"A Fast Placement and Global Routing Integrated Algorithm for Hierar- chical FPGAs" Limin Zhu, Jinan Bi- an,Qiang Zhou ,YieiCai. [21]	2011 Interna- tional Confer- ence on Infor- mation Science and Tech- nology	C++ pro- grams includ- ing netlist file	For reduction of mismatch in HFPGA : a) New Place- ment b) New Global Routing c) Detailed Routing	Alu4 : 3.98(CPU/s) Seq : 3.96(CPU/s) Frg1 : .011(CPU/s)	CPU time get larger very slow- ly as the circuit become larger.			A placement and global routing al- gorithm is present- ed to solve the mismatch problems between the two FPGA.

"A Fast Recursive Detailed Routing Algorithm for Hierar- chical FPGAs" Limin Zhu, Jinan Bi- an,Qiang Zhou ,YieiCai. [22]	2011 15th In- ternational Confer- ence on Computer supported Coopera- tive Work in Design	C++ pro- grams includ- ing netlist file	Algorithm for hierarchical FPGAs (HFP- GAs): a)Architecture b)Switchbox Connection Patterns c)Validity of Recursive Rout- ing	Alu4 : 1 Rep Seq : 2 Rep Frg1 : 0 Rep * Rep: count of repetitions	CPU time get larger very slow- ly due to its recur- sive na- ture			A recursive de- tailed routing is presented to specif- ically solve the routing problems for hierarchical FPGA
"A Two- Step Heu- ristic Algo- rithm for Minimum- Crosstalk Routing Resource Assign- ment" Yicicai,Bin Liu,Qiang Zhou, Xianlong Hong. [23]	2006 IEEE Transac- tions on Circuits and Sys- tems—II	C++	Two stage algo- rithm for cross- talk minimiza- tion in an inte- grated routing resource as- signment stage between global & detailed rout- ing.	BE	Reduce the cross- talk.	Reduce crosstalk as well as in- crease the com- pleting rate.	Wire siz- ing/spacing introduce into our framework.	Two criteria are used to measure the crosstalk across the chip : a) no of segments that are sensitive to each other and placed adjacently b) no. of failed segments
"Double Patterning- Aware De- tailed rout- ing with Mask Us- age Balanc- ing" Seong- I Lei,Chris Chu, Wai- Kei Mak. [24]	2014 IEEE	C++ Pro- gram- ming Lan- guage 32nm and 22nm tech- nology	-Double pat- terning lithog- raphy(DPL) -Maze Routing with Stitch Minimization -Negotiated Congestion based rip-up and reroute	For non- pre- ferred routing: ->1.9% : shorter wirelength ->85.2% less stitches -> 18.8% more vias ->98.2% less coloring con- flicts For preferred routing:	a)Faster b)Improve ment on the num- ber of stitches	Stitch_co st =30 Via_cost =10 α = 0.49 Targeted range 0.49-0.51	TPL or multiple patterning lithography in detailed routing algorithm.	First fix the color of each track in the routing grid and perform detailed routing using these pre-colored tracks.

				->0.2% : shorter				
				wirelength				
"DFM Based De- tailed Rout- ing Algo- rithm for ECP and CMP" Yin Shen, YiciCai, Qiang Zhou, Xianlong- Hong . [25]	2008 IEEE 9th Inter- national Symposi- um on Quality Electron- ics Design		CMR algorithm has main two steps: a) maze search- ing step b) maze back- tracking step.	->9% less vias CMR vs MR 14.6% metal density 0.96% avg amount of dum- my fill CMR vs DMR 6.99% metal density 0.72% avg amount of dum- my fill	a) increase total wire- length b) total number of vias	Minimiz- ing the metal density and the amount of dum- my fill metal while the wire length and vias are not increased	More accurate ECP and CMP model into the routing algorithm.	 a) Consider metal density . b) flatness of chips and improve the yield of semiconductor.
"Detailed- Routing Algorithms for Dense Pin Clus- ters in Inte- grated Cir- cuits" Mu- hammet Mustafa	2009 IEEE Transac- tions on Comput- er-Aided Design of Integrated Circuits	C++ GNU Linear Pro- gram- ming Kit	 a) A polynomi- al-time optimal algorithm b) An MCF- based model c) An LR-based algorithm 	 78% reduces the number of final opens Avg via counts per net by 4% 34% decrease the total execution times 	 a) reduce the number of nets b) CPU-time requirements increase with in- 			
Ozdal. [26]	and Sys- tems				creasing cluster size			

"An Inte- ger-Linear- Program- ming-Based Routing Algorithm for Flip- Chip De- signs" Jia- Wei Fang, Chin- Hsiung Hsu, Yao- Wen Chang. [27]	2009 IEEE Transac- tions on Comput- er-Aided Design of Integrated Circuits and Sys- tems	C++ program gram- ming lan- guage	Three reduction technique on the problem size: a) Constraint- graph-based pruning b) ILP node merging c) ILP edge bounding	ILP node merg- ing: Reduce the vari- ables (con- straints) by avg 84.0%(97.9%) ILP edge bound- ing: Reduce the vari- ables (con- straints) by avg7.0%(9.5%)	RDL rout- er for the flip- chip(FC) package minimiza- tion are: a) signal skews b) wire widths c) total wirelength			
"Crosstalk Minimiza- tion in Four-Layer Non- Manhattan Channel Routing" Yongbin Yu, Bo Yang, Yuliang- Zhang,Jueb ang Yu. [28]	2004 IEEE	C++	Two algorithms are followed : a) An improved bubble sorting based non- manhattan channel router b) A rerouting algorithms	reduce the cross- talk by an aver- age of 27.9%	Minimiza- tion of crosstalk	R		Solve the gridded non-Manhattan channel routing problem with the consideration of crosstalk by modi- fying the existing bubble-sorting al- gorithm
"Algo- rithms for High per- formance Two-Layer Channel Routing" Achira Pal,Debojit Kundu, et al. [29]	2007 IEEE		Algorithms for crosstalk mini- mization: a) Track- interchange(for simple channel instances) b) Track inter- change(for sim- ple channel instances)	30.77% reduced crosstalk	Reduction of cross- talk		Algorithm for reduc- ing cross- talk for three-layer HVH rout- ing model could be devised	Firstly Algorithm Net- Change after that Track - Interchange is con- sider, so depend- ence of algorithm is there.

"Channel Based Routing in Channel- less Cir- cuits" Glau- GlaucoBor- coBor- gesValim dos Santos, et al. [30]	2006 IEEE	JAVA 0.35µ tech- nology	ChAOS ("chan- nel assignment toward full- OTS synthesis") router	0.6% increase in wirelength 7.2% increase in area	Concen- trate in develop- ing tools that run very fast and can be used in a straight forward conver- gent methodol- ogy for layout generation	No two pins in same row can have the same x coordi- nate	 a) three or more layer together with some optimiza- tion in data structures b) fast stei- ner tree heuristics be consid- ered at global planning for wire length re- duction 	Aligned Terminals RoutingModel (ATRM) in which channel routing algorithms can be used to make con- nections.
"Via Mini- mization For Multi- layer Chan- nel Routing in VLSI Design" Bhaskar Das, Ashim Kumar and Ajoy Ku- mar Khan[31]	2014 IEEE Fourth Interna- tional Confer- ence on Commu- nication Systems and Net- work Technolo- gies.		 a) Two layer channel: genetic algo- rithm with layout modification b)Three layer channel: with layout modification with layout modification with three lay- er channel rout- ing using BFS 	Reduction of vias Layout modifica- tion : 34% Using BFS :more than 12% nd less than 55%	Reduce the num- ber of vias without increasing the rout- ing area.		Develop an algorithm for via minimiza- tion prob- lem.	a) Based on breadth first searchb) no specific rule for layering.
"Digital Implemen- tation of 16-bit Syn- chronous Counter with SoC Encounter for Place- ment and Routing" Pillem Ramesh and Venka-	2012 Interna- tional Journal of Engineer- ing Re- search and Applica- tion (IJE- RA)	SoC Encoun- ter 130 tech- nology	 a) floor planning b) power stripes c) placement d) generation of clock tree. e) detailed routing. 	Setup slack: 0.034ns Hold slack : 0.016ns Density : 90.079%	No DRC violations.			Helps physical designer to assess partition the logical hierarchy and ana- lyzing the optimal pin assignments time budgeting, power grids

taAravindB ezawa- da[32]							
"Restorable Routing Algorithm in optical Networks by Reduc- ing Block- ing Proba- bil- ity"Raman Kumar and Navneet- Kaur[33]	2014 IEEE Proceed- ings RAECS UIET Punjab University Chandi- garh		Routing algo- rithms: a) WLCR- FF(weighted Least Congest- ed Routing - First fit) b)shortest path routing algo- rithm c)genetic algo- rithm d) Minimum marginal cost routing algo- rithm.	Blocking probability : -proposed algo- rithm 8.6431× 10 ⁻⁹ % Conventional algorithm 4×10 ⁻² %	Blocking probabil- ity of the network for pro- posed algorithm increased with the increase in the of- fered load per unit link.	 	Number of light paths is becoming the main factor in determining the cost of WDM net- work.
"A Hierar- chical Ge- netic Algo- rithm for Multi- Layer Channel Routing" Mark P.Cloyed and Hesham H. Ali[34]	2004 IEEE		Hierarchical Genetic Algo- rithm.	Parameter was incremented from initial value of 2 to a final value 11.	Algorithm utilized the multi- ple layers to remove vertical con- straints and over- come the vertical con- strained cycles.		This is the algo- rithm which is ap- plicable for multi- layers. (2Lyr, HVH, VHV)
"Chan- nel/Switchb ox Defini- tion for VLSI Building- Block Lay- out" Yang Cai and D.F.Wong	1991 IEEE Transac- tions on computer- aided de- sign.	Pascal lan- guage.	Comparison of : Greedy algo- rithm and Minimum feed- back vertex set algorithm.	No of Switch- boxes is at most 2 more than the optimal value	No of switch- boxes generated by our algorithm is only about half as greedy algorithm	 Better algo- rithms can be devel- oped to minimize the number of L- shaped channels used	Computation time for large examples are only a few se- conds.

[35]						
"High Per- formance Multi- Layer Rout- ing for VLSI Cir- cuit Syn- thesis" Sangram- jitBhowal , rajat K. Pal [36]	2004 IEEE	 MCCI Routing solutions: a) two layer VH b)three-layer VHV and HVH c) four layer VHVH	Crosstalk is re- duced from 9 unit to 7 unit .	Minimize routing area and reduce total crosstalk in compu- ting a routing solution.	 Reduce total wire length re- quired in a routing solution that may optimize signal de- lays.	Amount of cross- talk between wire segments is propor- tional to the cou- pling capacitance.

IV. CONCLUSION

In this paper a comparison on routing problems likeNP-hard andNP-complete based on different algorithms is done. We conclude that if the layers are increased than the number of tracks are reduced so that the NP-complete problem is solved and crosstalk is reduced. 50%, reduction in number of tracks, 30.77% reduced crosstalk[29]Gridless routing algorithm is much faster than grid routing algorithm(i.e around $10\times$ speedup)[9]. These are the categories of manhattan channel routing. In channel-less circuits, channel based routing increase in wirelength and area.

REFERENCES

- [1] Ajoy Kumar Khan and Bhaskar Das, "A New Algorithm with Minimum Track for Four Layer Channel Routing in VLSI Design" *in proc. of IEEE International Conference on Computer Communication and Informatics*, Coimbatore, pp. 1-5, 2013.
- [2] Achira Pal, SwagataSahaSau, Tarak N. Mandal, Rajat K. Pal, Alak K. Datta, AtalChaudhuri, "Yet an Efficient Algorithm for Computing Reduced Are VLSI Channel Routing Solutions with Floating Terminals" in proc. of 14th International Confer ence on Computer and Information Technology, Bangladesh, pp.393-398, 22-24 Dec. 2011.
- [3] PralayMitra, NabinGhoshal, Rajit K. Pal, "A Graph Theoretic Approach to Minimize Total Wire Length in Channel Rout ing" *in proc. of IEEE Asic-Pacific Region*, pp. 414-418, 15-17 Oct. 2003.
- [4] SwagataSahaSau and Rajat Kumar Pal. "An Efficient High Performance Parallel Algorithm to Yield Reduced Wire Length VLSI Circuits" *in proc. of IEEE 5th International Conference on Computers and Devices for Communication(CODEC)*, pp.1-4, 17-19 Dec 2012.
- [5] M. NasirAyob, Fariz Hassan, A. Halim Ismail, H. Hassan Basri, M. SafwanAzmi, amarFaizZainal Abidin, "A Firefly Algo rithm Approach for Routing in VLSI" *in proc. of International Symposium on Computer Applications and Industrial Elec tronics (ISCAIE 2012)*, Malaysia, pp. 43-47, 3-4 Dec. 2012.
- [6] Yue Cao, Haitham Cruickshank and Zhili Sun, "A Rrouting Framework for Delay Tolerant Networks Based on En counter Angle" *in proc. of IEEE Wireless Communications and Mobile Computing conference(IWCMC),2011 7th International*, pp. 2231-2236, 2011.
- [7] Junbao Zhang, GuangchunLuo, Ke Qin, haifeng Sun, "Encounter-based routing in delay tolerant networks" *in proc. of Computational Problem-Solving*)(*ICCP*), pp. 338-341, 2011.
- [8] Yanheng Zhang and Chris Chu, "GDRouter: Interleaved Global Routing and Detailed Routing for Ultimate Routability" *in proc. of Design Automation Conference(DAC)*, pp. 597-602, 2012.
- [9] QiangGao, Hailong Yao, Qiang Zhou, YiciCai, "A Novel Detailed Routing Algorithm with Exact Matching Constraint for Analog and Mixed Signal Circuits" *in proc. of IEEE 12th Int'l Symposium on Quality Electronic Design*, pp. 36-41, 2011.

- [10] Yi-Huang Hung, Hung-Yi Li, Hung-Yi Li, Yi-Yu Liu, "Dangling-wire Avoidance Routing for Crossbar Switch Structured ASIC Design Style" *in proc. VLSI Design Automation and Test (VLSI-DAT), 2010 International Symposium* of IEEE, pp.177-180, 2010.
- [11] Shyamapada Mukherjee and Suchismita Roy, "Graph Colouring Based Multi Pin Net Detailed Routing For FPGA using SAT" *in proc. of 3rd IEEE International Advance Computing Conference (IACC)*, pp. 308-312, 2012.
- [12] XuZhenghua, "The Automation design Based on Graphs for the Symmetrical Routing in Integrated Circuit" *in proc. of IEEE International Conference on System Science, Engineering Design and Manufacturing Informatization*, pp. 331-334, 2011.
- [13] Christopher CondratPriyankKalla, Steve Blair, "Crossing-aware channel routing for photonic waveguides" in proc. of Circuits and Systems (MWSCAS), 2013 IEEE 56th International Midwest Symposium_, pp. 649-652, 2013.
- [14] Shuai Li and Cheng-KokKoh, "Analytical Placement of Mixed-size Circuits for Better Detailed- Routability" *in proc. of IEEEDesign Automation Conference (ASP-DAC)*, pp. 41-46, 2014.
- [15] Andre LuizDinizand ThiagoMota Souza, "Short-Term Hydrothermal Dispatch With River-Level and Routing Constraints" *in proc. of IEEE trans. on power systems*, pp. 1-9, 2014.
- [16] Jose' Cano, Jose' Flich, Antoni Roca, Jose Duato, Marcello Coppola, Riccardo Locatelli, "Efficient Routing in Heterogene ous SoC Designs with Small Implementation Overhead" *in proc. of IEEE trans. on computers*, pp. 557-569, March 2014.
- [17] JordiCortadella, Jordi Petit, Sergio G'omez, and Francesc Moll, "A Boolean Rule-Based Approach for Manufacturability-Aware Cell routing" *in proc. of IEEE trans. on computer-aided design of integrated circuits and systems*, pp.409-422, March 2014.
- [18] Shuai Li, Cheng-KokKoh "Analytical placement of mixed-size circuits for better detailed-routability" in *proc. of Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific,* pp. 41-46, Jan 2014.
- [19] Yanheng Zhang and Chris Chu, "Regular Route: An Efficient Detailed Router Applying Regular Routing Patterns" *in proc. of IEEE trans. on very large scale integration(VLSI) systems*, pp. 1655-1668, September 2013.
- [20] GuoXin, Zhang Jun and Zhang Tao, "A Distributed Multipath Routing Algorithm to Minimize Congestion", *in proc. of 28th Digital Avionics Systems Conference*, 25-29 oct 2009.
- [21] Limin Zhu, Jinan Bian, Qiang Zhou and YiciCai. "A Fast Placement and Global Routing Integrated Algorithm for Hierar chical FPGAs", *in proc. of International Conference on Information Science and Technology*, China, pp.52-57, March 2011.
- [22] Limin Zhu, Jinan Bian, Qiang Zhou and YiciCai, "A Fast Recursive Detailed Routing Algorithm for Hierarchical FPGAs", *in proc, of IEEE 2011 15th International Conference on Computer Supported Cooperative Work in Design*, pp.91-96, June 2011.
- [23] YiciCai, Bin Liu, et al. "A Two-Step Heuristic Algorithm for Minimum-Crosstalk Routing Resource Assignment" *IEEE Trans. on circuits and systems—ii: express briefs*,,pp. 1007-1011,october 2006.
- [24] Seong-I Lei, Chris Chu and Wai-Kei Mak, "Double Patterning-Aware Detailed Routing with Mask Usage Balancing" in proc. of IEEE 15th Int'l Symposium on Quality Electronic Design, pp. 219-213, 2014.
- [25] Yin Shen, YiciCai, Qiang Zhou, Xianlong Hong, "DFM Based Detailed Routing Algorithm for ECP and CMP", *in proc. of IEEE 9th International Symposium on Quality Electronic Design*, pp. 357-360,2008.
- [26] Muhammet Mustafa Ozdal, "Detailed-Routing Algorithms for Dense Pin Clusters in Integrated Circuits" *in proc. of IEEE trans. on computer-aided design of integrated circuits and systems*, pp. 340-349, March 2009.
- [27] Jia-Wei Fang, Chin-Hsiung Hsu and Yao-Wen Chang, "An Integer-Linear-Programming-Based Routing Algorithm for Flip-Chip Design". in proc. of *IEEE trans. on computer-aided design of integrated circuits and systems*, pp. 98-110, January 2009.
- [28] YongbinYu,Bo Yang, XuliangZhang,Juebang Yu, "Crosstalk Minimization in Four-Layer Non-Manhattan Channel Rout ing" *in proc. of IEEE Communications, Circuits and Systems*, pp 1281-1285, June 2004.
- [29] Achira Pal and DebojitKundu, "Algorithms for High Performance Two-Layer Channel Routing" *in proc. of IEEE TEN-CON*, pp.1-4, 2007.
- [30] Glauco Borges Valim dos Santos, Marcelo de Oliveira Johann, Ricardo Augusto daLuzResis, "Channel Channel-less Circuits" *in proc. of IEEE Circuits and Systems, ISCAS*, pp. 337- 340, May 2006.
- [31] Bhaskar Das, Ashim Kumar Mahato and Ajoy Kumar Khan, "Via Minimization For Multi-layer Channel Routing In VLSI Design" *in proc. of IEEE Communication Systems and Network Technologies (CSNT)*, pp. 1036-1039, April 2014.
- [32] Mr. Pillem Ramesh, VenkataAravindBezawada, "Digital Implementation of 16-bit Synchronous Counter with SoC En counter for Placement And Routing" *International Journal of Engineering Research and Applications(IJERA)*, pp.799-802, May-Jun 2012.
- [33] Raman Kumar, NavneetKaur, "Restorable Routing Algorithm in Optical Networks by Reducing Blocking Probability" *in proc. of RAECS UIET Punjab University*, pp.1-7, March 2014.
- [34] Mark P. Cloyed, Hesham H. Ali, "A Hierarchical genetic algorithm for Multi-Layer Channel Routing" *in proc. of IEEE circuits and systems*, pp.1536-1539, 2004.
- [35] Yang Cai, D.F.Wong, "Channel/Switchbox Definition for VLSI Building-Block Layout", *in proc of IEEE trans. on comput er-Aided Design*, pp.1485-1493, Dec. 1991.
- [36] SangramjitBhowal, Rajat K. Pal. "High Performance Multi-Layer Routing for VLSI Circuit Synthesis", *in proc.of TENCON*, pp.328-331, Nov 2004.

ABOUT THE AUTHORS

¹Upasana Yadav, pursuing M.tech from ITM University, Gurgaon in VLSIDesign and received B.Tech from Gurgaon College of Engineering for Women, Bilaspur, Gurgaon (Haryana) India in Electronics &Communication Engineering. Her main area of interest is in physical designing.

²**Pragya Sharma** Pursuing M.Tech from ITM University Gurgaon in VLSI Design and have done B.Tech from Gurgaon College of Engineering for Women (MDU), Bilaspur, Gurgaon (Haryana) India in Electrical&Electronics Engineering. Her main area of interest is Placement and routing in physical designing and digital VLSI design.

³Neeraj Kr. Shukla, (IETE, IE, IACSIT, IAENG, CSI, ISTE, VSI-India), an Associate Professor in the Department of Electrical, Electronics & Communication Engineering, and Project Manager – VLSI Design at ITM University, Gurgaon, (Haryana) India. He received his PhD from UK Technical University, Dehradun in Low-Power SRAM Design and M.Tech. (Electronics Engineering) and B.Tech. (Electronics & Telecommunication Engineering) Degrees from the J.K. Institute of Applied Physics & Technology, University of Allahabad, Allahabad (Uttar Pradesh) India in the year of 1998 and 2000, respectively. He has more than 50 Publications in the Journals and Conferences of National and International repute. His main research interests are in Low-Power Digital VLSI Design and its Multimedia Applications, Digital Hardware Design, Open Source EDA, Scripting and their role in VLSI Design, and RTL Design.

IJSER